Simulating Electronic Excitations

This is a thematic subset of my publications focusing on simulating electronic excitations and their dynamics. These works are purely theory based, with most focusing on the development and assessment of quantum chemistry methods.

*indicate equal contributions as co-first authors. indicate (co)-corresponding authors.

  1. Prediction of photodynamics of 200 nm excited cyclobutanone with linear response electronic structure and ab initio multiple spawning. (arxiv)
    Diptarka Hait*, Dean Lahana*, O. Jonathan Fajen*, Amiel S. P. Paz, Pablo A. Unzueta, Bhaskar Rana, Lixin Lu, Yuanheng Wang, Eirik F. Kjønstad, Henrik Koch, Todd J. Martínez.
    Journal of Chemical Physics 2024 160, 244101.

  2. Predicting the X-ray Absorption Spectrum of Ozone with Single Configuration State Functions. (ChemRxiv)
    Diptarka Hait, and Todd J. Martínez.
    Journal of Chemical Theory and Computation 2024 20, 873–881.

  3. Revisiting the performance of time-dependent density functional theory for electronic excitations: Assessment of 43 popular and recently developed functionals from rungs one to four. (arxiv)
    Jiashu Liang, Xintian Feng, Diptarka Hait, and Martin Head-Gordon.
    Journal of Chemical Theory and Computation 2022 18, 3460-3473.

  4. Computing x-ray absorption spectra from linear-response particles atop optimized holes. (arxiv)
    Diptarka Hait, Katherine J. Oosterbaan, Kevin Carter-Fenk, and Martin Head-Gordon.
    Journal of Chemical Physics 2022 156, 201104.

  5. Relativistic Orbital-Optimized Density Functional Theory for Accurate Core-Level Spectroscopy. (arxiv)
    Leonardo A. Cunha*, Diptarka Hait*, Richard Kang, Yuzehi Mao, Martin Head-Gordon.
    Journal of Physical Chemistry Letters 2022 13, 3438-3449.

  6. Exploring spin symmetry-breaking effects for static field ionization of atoms: Is there an analog to the Coulson–Fischer point in bond dissociation?
    Leonardo A. Cunha, Joonho Lee, Diptarka Hait, C. William McCurdy, Martin Head-Gordon.
    Journal of Chemical Physics 2021 155, 014309.

  7. Orbital Optimized Density Functional Theory for Electronic Excited States. (arxiv)
    Diptarka Hait, and Martin Head-Gordon.
    Journal of Physical Chemistry Letters 2021 12, 4517–4529.

  8. Accurate prediction of core-level spectra of radicals at density functional theory cost via square gradient minimization and recoupling of mixed configurations. (arxiv)
    Diptarka Hait, Eric A. Haugen, Zheyue Yang, Katherine J. Oosterbaan, Stephen R. Leone and Martin Head-Gordon.
    Journal of Chemical Physics 2020 153, 134108.

  9. Generalized single excitation configuration interaction: an investigation into the impact of the inclusion of non-orthogonality on the calculation of core-excited states(ChemRxiv)
    Katherine J. Oosterbaan, Alec F. White, Diptarka Hait, and Martin Head-Gordon.
    Physical Chemistry Chemical Physics 2020 22, 8182-8192.

  10. Excited state orbital optimization via minimizing the square of the gradient: General approach and application to singly and doubly excited states via density functional theory. (arxiv)
    Diptarka Hait, and Martin Head-Gordon.
    Journal of Chemical Theory and Computation 2020 16, 1699-1710.

  11. Highly Accurate Prediction of Core Spectra of Molecules at Density Functional Theory Cost: Attaining sub eV Error from a Restricted Open-Shell Kohn-Sham Approach. (arxiv)
    Diptarka Hait, and Martin Head-Gordon.
    Journal of Physical Chemistry Letters 2020 11, 775-786.

  12. Beyond the Coulson–Fischer point: characterizing single excitation CI and TDDFT for excited states in single bond dissociations. (arXiv)
    Diptarka Hait*, Adam Rettig*, and Martin Head-Gordon.
    Physical Chemistry Chemical Physics 2019 21, 21761-21775.
    Selected in the 2019 PCCP HOT Articles collection and as Editor’s choice.

  13. Prediction of Excited-State Energies and Singlet–Triplet Gaps of Charge-Transfer States Using a Restricted Open-Shell Kohn–Sham Approach (MIT dspace)
    Diptarka Hait, Tianyu Zhu, David P. McMahon, and Troy Van Voorhis.
    Journal of Chemical Theory and Computation 2016 12, 3353-3359.